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Canonical transformation between integrable Hénon-Heiles systems
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A canonical transformation between two known integrable cases of the Hénon-Heiles systems is
given and the separation of variables for the corresponding Hamilton-Jacobi equations is discussed.

PACS number(s): 03.20.+i

The Hénon-Heiles system [1]

d1=p1, P = —2aq% —bg:,
(1)

42 = p2, P2 = —2aq1q2,

has been extensively studied during the past years be-
ing one of the “simplest” examples (two particles in a
cubic potential) of Hamiltonian system with a mixed
phase space structure, i.e., partially ordered and partially
chaotic. For generic parameter values a, b the system pos-
sesses chaotic orbits and the Hamiltonian

1 b

H = 5 (p} +p3) + oq14; — 340 (2)
is the only conserved quantity. On the other hand, the
system was found to have a second independent integral
of motion for the following choices of parameter ratios
[2-5]

1 1

(i) % =-1, (i) % = -5 (i) % = -1 (3)

The integrable Hénon-Heiles systems corresponding to
the above cases show different degree of complexity.
Thus, for example, while the separation of variables prob-
lem for case (i) is very simple and it was solved long ago,
the same problem appeared to be much more involved
for case (iii) and it has been solved only very recently [5].
This has induced to consider the above cases as defining
three different cases of integrability for the Hénon-Heiles
system.

The aim of the present paper is to show that the
Hénon-Heiles systems corresponding to cases (i) and (iii)
actually represent the same dynamical system written in
different coordinates. More precisely we show the ex-
istence of a canonical transformation which maps con-
served quantities of case (i) into conserved quantities of
case (iii) and vice versa. As an application we construct
the separating coordinates for the Hamilton-Jacobi equa-
tion for case (iii) by knowing the corresponding ones for
case (i) (simply Cartesian coordinates) and applying the
transformation.

To construct the canonical transformation, we take ad-
vantage of the isomorphism established by Fordy and Gi-
bons [7] between the stationary flows { = 0 of the fifth
order partial differential equation (PDE)

€t = [ézzzz + (80’ - 2b)£€zz - 2(0’ + b)é: - 2_300‘1)53]2 (4)
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and the Hénon-Heiles systems corresponding, respec-
tively, to case (i)—(iii). The isomorphism is induced by
the transformation

Qa = Ea
1 =&,

®)
P = 2B — €2 — % + 26,

qg = %(bgz ~é.:c:c)7

which allows to write the four first order Egs. (5) with a
fixed value of energy (2), as a single fourth order ordinary
differential equation (ODE) (and vice versa). In Egs. (5)
the z variable of (4) corresponds to the time variable of
the Hénon-Heiles system, i.e., £, = ¢1, &zz = P1, etc.,
while the constant F (coming from the space integra-
tion in the equation £ = 0), simply fixes the energy shell
H = FE in the Hénon-Heiles systems. Without loss of
generality, we fix the values of parameters a,b as

case(i)a =1,b= -1,
1
case (iii) a = 2’ b= -8. (6)
(Note that one of the two parameters, say b, can always
be scaled by the transformation ¢t — %, ¢ > bg, pi o
b2 p;, H — b* H, so that only the ratio v = a/b is impor-
tant.) Equation (4), with the above choices of parameters

a, b for case (i) and case (iii), becomes [6,7], respectively,
the Sawada-Kotera equation:

Vi = Vazooe + 10V Vi + 20V2V, + 10V, V,e;  (7)
and the Kaup-Kupershmidt equation:
Us = Uzgozz + 200Uz, + 80UU, + 50U, U,.  (8)

It is remarkable that Eqgs. (7,8) are connected by the
following Miura transformations

V = uy — 2u? (9)
and
U= —u, —u?, (10)

to the same PDE equation
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U = Upzzzz — 10(Uz + 2u®)Ugge — 102,
—80UU Upy — 20u] + 80u u,. (11)

This allows to construct a transformation between the
Hénon-Heiles system of case (i) and (iii) in the following
manner. Let us denote the £ variable in Egs. (5) with V
(Sawada-Kotera variable) or with U (Kaup-Kupersmidt
variable) and the corresponding variables in the Hénon-
Heiles system (]‘) with QlaQ21 P17P2 or qi, 942, P1, P2, de-
pending on whether they refer to case (i) or case (iii).
We take V = Qq1, U = ¢; in (5) and solve Eq. (10) by
taking

_ P
q2

u (12)

Since V and U are both linked to the same Eq. (11)
we can substitute (12) in (9) to obtain the @, variable
for case (i) in terms of the variables of the Hénon-Heiles
system for case (iii), i.e.,

2
Q=-3 (z—j) —q1- (13)

Substituting this expression in the second equation of (5)
and using the equation of motion for case (iii) to eliminate
time derivative on variables g, p, we get

3
Py 26(12> +6<IE> q1 — P1- (14)
q2 q2

In a similar manner, we obtain the other transformation
equations from the last two equations in (5) as

F(q,p)
4}

P, = 21(—;% F(q,p). (16)
2

Q2= - , (15)

In Egs. (15,16) F(g,p) is just the second integral of mo-
tion of the Hénon-Heiles system for case (iii), i.e.,

6
q
F(g,p) = 9p1 — 6p1p2g; — < +18p3g5a1 — 3¢ (17)

The above transformation maps the Hamiltonian
H(Q,P) [put a = 1,b = —1 in Eq. (2)] of case (i), into
the Hamiltonian H(q,p) [i.e., a = %,b = —8 in Eq. (2)]
of case (iii)
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and the second integral of motion, F'(Q, P), of case (1)
F(Q,P)= PP, + 5(5Q3 + Q1Q2) (19)

into a function of the second integral of motion of case
(i), i.e.,

Fp,a)

> (20)

F(Q,P)—

Equations (13)—(16), giving the transformation from case
(1) to case (iii), can be easily inverted as

3/P)\°

q1 = —Z (6;) - Qq, (21)
3 (P’ Py ~

p1 = B (@—2) +3 (Z?:) Q1 — Py, (22)
_ | —6F(Q,P)

q2 = Q2 ) (23)
_ 1B [eF@P

P2 = 2Q> Q2 . (24)

By rewriting Egs. (1) in the form

dz _ »0H

— 25
dt 0z’ (25)

where

z = col (q1, 92, p1,P2),

OH . ((9H O0H OH OH
A =—CN\g—H73 395 )
0z 0¢1’ 8q2 " Op1” Op2

and E denotes the (4 x 4) skew symmetric matrix

E:(_Ol(l)), (26)

one readily see that the Hénon-Heiles systems of case (i)
and (iii) are related by

dz dZ

b V/ S

dt dta Z:COI(Q11Q27P17P2)' (27)

In Eq. (27) M denotes the Jacobian matrix %3%22,_1%1%_)
given by

H(Q,P) — H(p,q) (18)
|
3 P
-1 5623
—6Q1Qs —2Q3+3P, P,
V—6FQ; Q2v/—6FQ;
M =
3P 3 P(3P2+2Q1Q3%)
P, 2 H
3P Q, _3p (3P P,+2Q1Q2)
Vv—6FQ: 2Q3 v—6FQ:

It is remarkable that the matrix M is symplectic, i.e.,

3 P,
0 _Eélg
—3P, —2P,
V—6FQ; V—6FQ;
(28)
1 33P7+2Q:Q3
2 Q3
3 p? 3P, P, +6F
2Q:v—-6FQ; 2Q2v—6FQ:
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MEMT = E, (29)

this actually proving that the transformation between
Q,P and p,q is canonical. Taking into account the
isomorphism between cases (i) and (iii) with the sta-
tionary flows of, respectively, Sawada-Kotera and Kaup-
Koupershmidt equations, this also shows the existence of
a transformation between stationary flows of Egs. (7, 8).
As an application of the above result we can readily
obtain the separating variables for the Hamilton-Jacobi
equation for case (iii) from those of case (i). Indeed, as
well known, H(P,Q) separates in the Cartesian coordi-
nates u; = Q1 + Q2,12 = @1 — Q2. Using the above
transformation we then obtain that the corresponding
separating coordinates for case (iii) are simply

2
M1+ p2 = -3 (%) —q1,

(M1 — p2)? = — 2. (30)

Note that the variables p, 2 are elliptic functions and the
canonical conjugated variables m;, pu;, ¢ = 1,2 are

d 4
T2 = I;;z = \/-gﬂig +E; £ F;

5899
with E;, F; given by

1 2
B = S(n]+m3) + 3(k1 + m2),

2
Fy=S(n} —md) + 3 (11 — ).

DN | =

Equations (30) coincide with those obtained in Ref. [5] in
terms of Painlevé analysis performed directly on system
(iii).

In conclusion we have shown that the Hénon-Heiles
systems corresponding to case (i) and case (iii) are con-
nected by a canonical transformation and, therefore, they
represent the same system written in different coordi-
nates. On the other hand, it is known that the Hénon-
Heiles system for case (ii) is also isomorphic to the sta-
tionary flows of a fifth order PDE [i.e., the second flow of
the Korteweg—deVries (KdV) hierarchy] [8]. This raises
a natural question: is the Hénon-Heiles system for case
(ii) also related to case (i) [or (iii)] by a canonical trans-
formation? Although we cannot exclude this possibility,
we remark that such a transformation, if it exists, cannot
be constructed by the above method since it appears im-
possible to map, by Miura transformations, the second
equation of the KdV hierarchy and the Sawada-Kotera
(or Kaup-Kupersmidth) equation into the same fifth or-
der PDE [i.e., Eq. (11)], as done before.
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